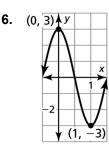
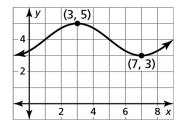
10.6 **Extra Practice**

In Exercises 1–4, find the frequency of the function.

1.
$$y = \cos 3x$$

2.
$$y = -\cos 4x - 3$$


$$3. \quad y = \sin \frac{\pi x}{2}$$


4.
$$y = 4 \cos 0.4x - 3$$

5. A sub-contra-octave A tuning fork (corresponds to the lowest note on a piano keyboard) vibrates with a frequency f of 27.5 hertz (cycles per second). You strike a sub-contra-octave A tuning fork with a force that produces a maximum pressure of 4 Pascals. Write and graph a sine model that gives the pressure P as a function of the time *t* (in seconds).

In Exercises 6 and 7, write a function for the sinusoid.

8. When you ride a Ferris wheel, your distance from the ground will vary with respect to the number of seconds that have elapsed since the wheel started. The table shows your height h (in meters) above the ground at time t as you ride the Ferris wheel.

t	0	1	2	3	4	5	6	7	8	9	10	11	12	15	20
h	1	2.3	5.8	10.2	13.7	15	13.7	10.2	5.8	2.3	1	2.3	5.8	15	1

- **a.** Use sinusoidal regression to find a model that gives h as a function of t.
- **b.** Predict your height above the ground after 42 seconds have elapsed.

Extra Practice

dds

In Exercises 1–6, find the values of the other five trigonometric functions of θ .

1.
$$\sin \theta = \frac{3}{8}, \frac{\pi}{2} < \theta < \pi$$

2.
$$\cos \theta = -\frac{1}{3}, \, \pi < \theta < \frac{3\pi}{2}$$

3.
$$\tan \theta = 3, 0 < \theta < \frac{\pi}{2}$$

4. cot
$$\theta = \frac{10}{3}$$
, $\pi < \theta < \frac{3\pi}{2}$

5. sec
$$\theta = -\frac{9}{5}, \frac{\pi}{2} < \theta < \pi$$

6.
$$\csc \theta = -\frac{7}{2}, \frac{3\pi}{2} < \theta < 2\pi$$

In Exercises 7–12, simplify the expression.

7.
$$\sin x(\cot^2 x + 1)$$

8.
$$\frac{\cot(-\theta)}{\cos(-\theta)}$$

9.
$$\cos\left(\frac{\pi}{2} - \theta\right) \cot \theta$$

$$10. \quad \frac{\tan^2 \theta - \sec^2 \theta}{\cos \left(\frac{\pi}{2} - \theta\right) \sec \theta}$$

$$11. \quad \frac{\sin(-x)}{\tan(-x)\sec x} + \sin^2 x$$

$$12. \quad \frac{\csc^2 x - \tan x \cot x}{\csc x - 1}$$

13. Describe and correct the error in simplifying the expression.

In Exercises 14-17, verify the identity.

14.
$$\tan\left(\frac{\pi}{2} - x\right)\cos^2\left(\frac{\pi}{2} - x\right) = \cos x \sin x$$
 15. $\frac{1 + \sin(-x)}{\cos x \tan x - 1} = -1$

15.
$$\frac{1 + \sin(-x)}{\cos x \tan x - 1} = -1$$

17.
$$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1-\sin\theta} = 2\sec\theta + 2\tan\theta$$

18. Use the sine and cosine functions to verify the identity $\tan x \cot x = 1$.